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In solving variational problems of supersonic gas dynamics by the method of
Guderly and Armitage [1], it is essentlal to have linear dependence of the
coefficlents of the flow parameters being varied on the closing characteris-
tic. This permitted the solution of a number of variational problems [1 to 4]
without having to consider the relations between the indicated variations,
which arise from the equations of the characteristics. Some problems, how-
ever cannot be solved in this manner. In general, therefore, it is also nec-
essary to include the relations on the closing characteristics in the auxil-
ary functional. This is 1llustrated by the example below, 1n constructing the
rear part of a minimum drag body with restriction on the length, when the
contour may contain an end wall, Two cases are studied. In the first, the
pressure on the end wall does not depend on the shapes of the desired contour.
Here the Lagrange multipliers, introducing the relations on the characteris-
tics, turn out to be zero, and the solution agrees with that obtained earliler
{3). In the second case, the pressure on the end wall 1s determined by a con-
dition of the type of Korst's condition [5] and consequently, it depends on
the shapes of the desired contour. Here it 1s necessary to introduce the re-
lations on the closing characteristic. This example 1s also interesting in
that for 1ts solution, questions are considered which are connected with va-
rying the position of the junction of the end wall and the segment of the
two-sided extremum. The latter are important for the solution of other prob-
lems, e.g. in the construction of the nose part of minimum drag bodies.

1. Let x, y be rectangular coordinates (in axisymmetric case, the y-axis
1s the axis of symmetry from left to right) g the density, p the pressure,
U, v the x, y components of the velocity, ¢ the speed of sound, v = O or 1
for plane and axi-symmetric cases respectively. For independent varlables, we
take y and the stream function v,  defined by Equation

dy = y'p (— vdx + udy)

Equilibrium flow of an 1deal gas 1s described by Equations
_ du m'p __d{ypy)? A (wjv)
L= w0 L, = St = 0

(1.1)
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, (1.1)
v woo cont.
Liz o =0

Here p, ¢ and ¢ are known functions of w and v, thus

(@Gp/ow)y = —pw, (3p]0w)y = — c2pw, w=Vul - #

For supersonic flow (w > o), system (1.1) possesses two famllies of real
characteristics. The equations of the characteristics of the second famlly,

needed later on, are

L="CM _ pIh oty =0, Ly=gh4yY =0
@ @ &
@ (1.2)

Lg= I

+yX =0

Here d/Hv is the total derivative with respect to ¥, taken along the char-
acteristic;

ViE—&

peu?

Q=0Q W uwv) =g

v Vu? — ¢ — cu

P=P(,u,v)=

Y :Y(\p, u, ’U) — powa
g
XZX(\‘), uyv):.u_ﬁgwc_'ﬂ

All the parameters are conveniently taken to be dimensionless.

2. Let us conslder the problem of constructing the contour ag of the rear

part of a body, which gives a minimum wave drag y for a given flow to the left
of ac a specified maximum allowable length

4 of the contour (which we shall take as
characteristic dimension), and satisfying
a certain condition, (In Fig.la, a¢ and ad
are characteristics of the first family,
bc 1is a characteristic of the second famlly).
The isoperimetric condition is defined by
specifying one of the characteristics of
# the desired body, e.g., its volumz, or its
side area, etc. In addition we require that
the tall end point of the contour lle on
the line y = 3°(x), which in particular may be the axis of symmetry.

The direction of the specified contour at the left of poirt @ and that
determined by the solution of the varlational problem are different. We re-
strict ourselves to the case when the angle at a is convex. Then fer a small
change of the contour ag, only tne position of the characteristic ad (which

@
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bounds the expansion fan) and the flow parameters to 1ts right will change.
The contour 6¢ may consist of a section of a two-sided extremum ad i.e.
the end wall dg. If the parameters are denoted by the indices at the corre-
sponding points, and the coordinate system is chosen such that x, = O, then
the equation of the end wall will be x = 1 for y, < ¥ < y, . The pressure on
bg, which will be assumed to be independent of y, will be denoted by p°.
Up to within 2 nonessential multiplier

b 4
X = Sy'.pdy + §y"p°dy (2.1)
The isoperimetric condition has the form
b
K= S/(y, z, 2') dy + §f°(y, z, 2')dy (2.2)
a b

where K {a a specified constant, S and ¥ are known functions, and prime de-
notes the derivative (3 ) 0Y)y—yg=0 -

Thus, 1t 18 required to construct the contour y = x(y) where 0 £ x s 1,
2y =0, ¥ = P {x,), for which the functional {2.1) attains a minimum, for a
specified flow on the characteristic a¢ and for isoperimetric condition (2.2).
The pressuve distribution on the contour i1s found by solving system (1.1).

For the complete lformulation of the problem, it is necessary to give the meth-
od of determining p°.

3. Let p° be a2 constant, independent of the shape of the desired contour.
Then x 1s completely determined by the cholice of the segment ad, whose region
of influence to the right 1s bounded by characteristic ¢b. We construct the
functional ‘

b
1=\p+M+oLydy + @+ 19y +

a

d
+ 5(1’1°L4 -+ 12°Ls -+ T3°Lg) dP + SS (11°Ly + pa°La + ps°Ls) dp dy
-3

G

CF Qo™ 505

Here ¢ is the region of the vy plane, bounded by the characteristics ad
and b and the vertical axis (Pig 1b); A = const, o®{y), v,°(¥), and 4, °(¥, ¥)
are Lagrange multipliers. For a rfixed X, because of (1.1}, {1.2) and (2.2),
the variations of I and of x for any admissible variation are the same. There-~
fore

br=of = [re[28 _p 2oy 2 o) ay s (3.1)

H{yre—r +ri—fr) — et — 1| —

Q a o [~} O ]
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(3.1)
cont.

—{N° 18 (v/u) — Pdpl}o-+ ((y*P° + M) @ + Mol Az, +
b

g d
+ x>(/x° — f®) bzdy + S Uz 4 UMdu + UPsv) dy +

a

d
+ S(V(O)éx + V%5, + V@8 4 V(B)Ay) dy +

b

*SS W%z + WV8u + WDb0) dp dy
G

Here [J(), V) and W are known factors of the Lagrange multipliers and
other variables, 6¢ 1s the variation of £ for fixed ¥ and y, Af = &¢ + (s2/
6y)Ay is the variation of £ on the closing characteristic for fixed v, Ax,
1s the altered abscissa of the point g, ¢ = d3° (x)/dx, the subscripts minus
(plus) indicates the quantity to the left (to the right) of the corresponding
points (in the xy plane), and subscripts x and x' indicate partial deriva-
tives with respect to x and x'. We note that although on the characteristic
ad the derivatives of the flow parameters with respect to Y and y are dis-
continuous, the multiplier in front of ay, is continuous in vliew of the first
relation (1.2) and of the continulty of these flow parameters on 6d. Defining
ua® in ¢ by Equation

dy
and the boundary condition
© — dys’
|4 }ls — d‘llJ =0 (ondb)

we find that Pg° (P, ¥) = B’ () = — dry’ () / dy.

Taking this into account, using the Equations

X, — P”’ PX — £ ¥,=0, ,——"S’—PY—%Y,,=O

1 u u —
Xm-p;~my—0 Xyt ¥ — e 2 ¥ =0
2 —v? u
X + Y"{"' pvzcg - va=0

gu = (a; / au)q,'g’ gp == (ac / 6v)¢,u)

and transforming the Lagrange multipliers
a @ =a° =718 TIW=7" T.@)=7"+ @/’ (3.2)
Te@) = 7% Pa(h ) =1’ B (b y) =1’ —75°  Ms ( 9) = ps’
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we find instead of (3.1) the following:

oy = o1 = fr [ 2502 —

%y’i] + T2 }d Ayq +

+Hy =P Ay — ey —a—T] —

—n |28 PR 0%} Avet (M + 2). — Mol Ay —

— {11 [8 (v /u) — Pdpl}e- + ' p° 4+ M%) @ + Af®lgAz, +

S(/x — jo) bz dy + S (U%z - Udu + U26%) dy +

d

+ S (V38u -+ V280 + V3Ay) dp+ KS (Wb + W2év) dy dy
b ¢

Here Ut, V¢ ana W' do not depend on vy, and p,. This means that Equation
Ly = 0 in general may not be introduced, while L, = O should be introduced
in I only under the line integral sign. The remaining Lagrange multipliers
are chosen 8o that in 8y there remain only the variations of the coordinates
of the contour ag. Let y, and p, satisfy the following equations in G:

1= 2!*_1__ Op _ w Ope 4 s
Wi= y'pu oy y'pvc 0y v 0 (3.3)
aul c2— 92 O u Jpg )
w2= L7 A - B

YR 5y o y'pcv? oy

For w > g, this system has the same characteristics as (1.1). Along these
characteristics, the relations

b
dm+ V7= gy, —0 (3.4)
y'pvic

hold, in which the upper sign corresponds to the characteristics of the first
family. The multipliers a, y, &nd y,, and also the boundary conditions to de-
termine y; and u,;, we find by equating to zero U, and U, on ad, ~ on db, and
the coefficients before Ay, and y,,. This gives

=1, pa=a (on ab) (3.9)
VL= v —u sz — 2 ﬂ\l . ( 2pv p _dL . _(v“)Q \) ,
cu? ay N \u ay y v

2
+ 12yYu —pX (ulv 4 B2 P) =0
y'v

1 Y — dn duv d(v/uw) cutv Y =&
VY —V2X = 2P¢+71P[w2 e A ivue J!+

+ 1y (YYy—XY,) =0 (3.6)
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V3= {cv—u :{;u‘ —c %‘% — <£}’:TU_ :[l;; J-.(nl)()u> 4 Yoy~ Yo Ol —
ﬁ{cu-i- v Vlw‘ — ;2,%—71(290 P du + y 0, ),A Yoy Y }
cu P
N dTu; —n+ )y e —nvr““’Y =0 (ondb)
a n 9
{Tl[ ST 5§]+Tz}d =0, Tu=0 3.7

From the linearity and homogenity of the second and third equations of

(3.6) and the boundary conditions (3.7), we have

71 (%) =1, =0

on db, the first equation of (3.6),

(3.8)

and the boundary condition for u, and u,
assumes the form

TS “"‘ -0 (on db)

These conditions completely determine all the Lagrange multipliers for
any smooth contour ab. In accordance with these conditions we obtaln

8% =81 = {{y*(p — P°) + M/ — fo') — (u/ V) 2l — M Ty +
+ [(Me + @) — M ToAzy + [(1P° + M) @ + Melgbrg +
g ?
+ A S (f* — f°) dxdy 5 Uz dy
b

a

If we note that the signs of &x on @b and Ay, are arbitrary for y, > y,,
while Ax,, Ax, and 8x on bg are nonposltive (in view of the boundedness of
the contour length), then we really obtain the necessary conditions for a

minimum

UO__—_‘A.(fx-—fg')—a':U (on ab)
(15 (p— )+ 2 —fe2) —@/D)al =M D=0 g
A (fxO — /x’or) >0 (on bg)

[(Mx + a).— M1 <O, [(¥*2° + M) @ + Mx°lg << O

Here the first two equations determine the shape of the optimum contour,
while the remaining ones are conditions of the fact that the end wall bg is
a section of boundary extremum. If the optimum contour does not have an end
wall (y, - y.), then at the point ¢, we must have the 1lnequality

Iy —p°) + M(f — for ') — (u/ D)l — Af,"}e > 0 (3-10)
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These conditions agree with those found in [3], except in notations and
some nonessential differnnces in the problem formulation. In [3] the aolution
was carried out without including the Rquations (1.2) into the auxiliary func-
tional. It is clear that this 1s a consequence of the linearity and homogene-
ity of the equations and boundary conditions used in determining Y, and vy,.

As it follows from (3.4), (3.8) and (3.5), the values of u, and u, on dbd
are determined by Formulas

uvy (Y ' p o\ Y, , L
=y (y) () b= ) @R

4. 1In reality, p° 1s determined by the interaction of the surface y =
#° (x) and therefore depends on the shape of the uninown contour being found,
The flow configuration is given in Pig 2a, where ak, ah, 22 and df are char-
acteristics of the first family, which bound the expansion waves xah and 2df;
ob and ke are characteristics of the asecond family, en is a shock wave, and
be 18 the streamline dividing the flow from the stagnation region des. This
filow reglon is represented in the Yy plane in Pig. 2b,

(v)

Let us assume that the preassure p° in the stagnation region is everywhere
constant, that the flow at the point e behind the shock wave agrees in direc-
tion with the curve y = 3*(x), and that of all possible flows, the one real-
ized 4is that which at e satisfles the relation

n [p° (v We-, @l =0 (4.1)
where I 18 a known function and the minus sign indicates parameters to the
left of e¢. For the present investigation the concrete form of this function
is of no value. It is only important that in accordance with (4.1)

[A(v]u)+ kAP + kAz]e- =0
(ky =107} 3 (v [u)) (9n ] 8p°)}, ko= (O O9)(dP /dz)(r/3p°)Y)

Here, as before, Az 1s the variation of £ on the closing characteristic

(for fixed v).
The use of (4.1) introduces a change in the construction of the auxiliary
functional. The region ¢ 1s now bounded by the streamlines a2 and de and the
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characteristics ap and he; the integral on ab is added to that on be, while
the integral on dbd is replaced by that on he.

Special consideration 18 required for problems connected with varying y,
Since the flow parameters at the corner undergo discontinuities, changes in
the neighborhood of the point b, as we vary y,, (with fixed v and y) will be
finite. This renders usual methods, based on the smallness of variations,in-
applicable. Thus we proceed as follows. In the integrals over regions ¢, and
Gy, bounded by the contours abth and def, the integration will be carried
out in v and y. Here the u, are functions of v and y. As to the wave 427, we
shall teke a coordinate system rigidly attached to the point ». The independ-
ent variables will be chosen to be y and angle g, defined as shown in Fig.2b.
In the vg plane (Fig.2c), the region ¢, bounded by 2, /tb_, corresponds to
the £37. The multipliers u® in G, are taken as functions of Y and ¢, and the
integrals over Yy are replaced by intervals over ¥g. By the definition of ¢

and Equations (1.1) become
. Ou ay’p Vv dy'p
L =g + w035~ Tost6 oy O
Lot o), ¥ d(u/v)
LP=—7p ~—wa0 75— T to op —°

In constructing the auxiliary functional, we consider in addition the
possaibility of discontinuities in the Lagrange multipliers on d? [3]. In
connection with this, the integral over G, will be seperated into the sum of
two integrals, over Gy, and (o5, respectively, each of which is a region of
continuity of the pu,°.

To this end, we take I 1n the form
b e

: g
1=\@p+ 1+ oLy dy +ooLady + {p> + 1) dy +
a b b

&

+\ Lo+ 1L+ 1Lo) dp + (W + ) 0oL+ we'Le + 0oL dwdy+
e Gm Gaz Gz
+ S oL + w0 +us’Ls") dp do
Gy
We find the first variation 8y = 8. Let 6°¢ be the variation of £ in the

region G, and on its boundaries for fixed Y and §. Then, according to (4.1)
§°y = Ayy . On the boundary

8°F = Ot + (%)e Ays + [(%)e - (%—g—)l] A9

Here &g 1is the varlation of £ outside of ¢; at points of the unvaried
boundary, i.e., for fixed y and y; the derivatives inside (outside) the cen~-
tered wave region are denoted by superscripts t (e), and Ag is the variation
of 8 on the boundary of the centered for a fixed v.

We require that the Lagrange multipliers be continuous on b¢ and 2f, then
determine u,° as was done previously, and make the substitution (3.2). As a
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result, the expression for 8y, after changing back to the variables ¥ and

¥, vecomes

ox =8 = {[ "G — P o), Ayt [w— (L ot ma) @+

v+1 v

-+ 'I'L’%L_Axe -+ Lg—m— + Tie (P + ke — S}hy“dy] Ap® +

+{{9‘“ (P—=r)+ 2 —foa) — (@] v)alo- — [Af° — (u [ v) alos +
(] \ 1
+ § marn) —wd @ ron +v (v p B+ i %) dvay  Av +
b.tbye Gy

+ A (form — f2%) + a_— a JoAzs 4+ [(y°P° + M) @ + Af®leAzy +-

£ ¢
+ M\ (1" — 1) Swdy —{ [0z + (e —pa) 8 (u/0)] dy +
b b
b h
+ S(U“ﬁz + Uy + U2v)dy + S (V18 + V2w -+ V3AY) dy +

a

d
+ 3 (R'6u -+ R*v)dp + SS (Widu + W2dv) dy dy +

GGy

+ SS (W8°u + W28°) dp dy

Gy
(#1=ex (1 v+~§§-[uz] ), m=mvx)

Here {u,] in R denotes Jumps of y, on the characteristic d». The choice
of the Lagrauge multipliers in the present case does not materially differ
from that given above, and leads to the following results. The multipliers
d, and ug; are determined everywhere in ¢ by Equations (3.3) and (3.%4). The
boundary conditions for the solution of these equations and the equations
for determining a, vy, and y, are: on ad, condition (3.5), on me, Equation
{3.6), and on e, Equation

By = a = G = const

The value of g, &nd the boundary conditions for calculating vy, 8nd yp are
given by the Equations

fn[2ea _p2] i) — (6= (a1 o+ ], =0

ygu+ - yi;

. (4.3)
71— FTe(P+ k) — Suly"dy =
5
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Finally, the discontinuities in the Lagrange multipliers on the charac-
teristic db must satisfy the relation

2

P
o (2] =0 (4.4)

u
(Wl + —
Yy

As before, the obtained system of equations and boundary conditions de-
termine the Lagrange multipliers for any contour a¢. However, now because
of the inhomogenity of the last equation in (4.3), the functions v, = yg = O
are no longer solutions.

We note that as in problems admitting & transition to characteristic con-
tour [62, the first condition of (%#.3), by virtue of the hyperbolicity of
system (1.1), 1s satisfied at any point of the segment mt of the character-

istic he, and it may be used here instead of the second or third equation in
(3.6) to determine vy, and y,. In addition, one of these equations may be re-

placed by

d
Vi=—gp e DT Q —pw Y 4

y'puct (pw2 dv v Pau? )_
+u2—cz wy dy y‘”l)\p‘lv—}— y'v P)=0

By considering the terms which remain in 8y after choosing the Lagrange
multipliers, we get the necessary conditions for a minimum x, which, except
for the condition at the point b, are the same as (3.9). However, the condl-
tions at the point b, after transformation with the use of (3.3), are re-
placed by

[y (p— )+ A(f—fex') —(w/v) 2]t — [M° — (u/v) alpe

: 1
+ 3 (1" dp — pad () 0)] = 0y (M (o — fars®) + 2t — 1,15 <0

b-

The integral 1s calculated for y s y, .

In the case of the absence of the wall (y, = y, = ¥, ), the last equation
in (4.3) gives y,, = O. From thls, as previously, we get y, = y, = O on ke,
and then from the second equation (4.3) we conclude g, = O. Considering this
fact, and also that for y, = y, the characteristics he and d? coincide, we
obtain the same condition as in the case p° = const, including condition of
the absence of the end wall (3.10). Thus, thls condition holds for the gene-
ral case. Earlier, this condition has been obtailned by other methods in (7].

We note that extension of the domain ¢ used in the auxiliary functional
beyond the boundary of the corresgonding domain of influence does not change
the final results. Thus, if for p° = const, we take the region ¢ to be an
actual point, then outside the triangle add all the Lagrange multipllers will
turn out to be zero.
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