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In solving variational problems of supersonic gas dynamics by the method of 
Guderly and Armltage Cl], it is essential to have linear dependence of the 
coefficients of the flow parameters being varied on the closing characteris- 
tic. This permitted the solution of a number of variational problems 11 to 41 
without having to consider the relations between the indicated variations, 
which arise from the equations of the characteristics. Some problems, how- 
ever cannot be solved in this manner. In general, therefore, It Is also nec- 
essary to include the relations on the closing characteristics in the auxil- 
ary functional. This la illustrated by the example below, in constructing the 
rear part of a minimum drag body with restriction on the length, when the 
contour may contain an end wall. Two cases are studied. In the first, the 
pressure on the end wall does not depend on the shapes of the desired contour. 
Here the Lagrange multipliers, Introducing the relations on the characteris- 
tics, turn out to be zero, and the solution agrees with that obtained earlier 
133. In the second case, the pressure on the end wall Is determined by a con- 
dltfon of the type of Korst's condition [53 and consequently, It depends on 
the shapes of the desired contour. Here it Is necessary to introduce the re- 
lations on the closing characteristic. This example is also Interesting in 
that for its solution, questions are considered which are connected with va- 
rying the poaltion of the junction of the end wall and the segment of the 
two-sided extremum. The latter are lmportant for the solution of other prob- 
lems, e.g. In the construction of the nose part of minimum drag bodies. 

1. Let x, y be rectangular coordinates (in axlsymmetrlc case, the x-axis 

Is the axis of symmetry from left to right) p the density, p the pressure, 

u, u the X, y components of the velocity, c the speed of sound, v - 0 or 1 

for plane and axl-synnnetrlc cases respectively. For Independent variables, we 

take y and the stream function ~,'deflned by Equation 

C@ =< y’p ( - z;dx + udy) 

Equilibrium flow of an Ideal gas Is described by Equations 

L 1 E !?_ _ ?/'I) ~_-l () 
a9 d* ’ 

(1.1) 
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(1.1) 

Here p, F: and c are known functions of w and Y, thus 

(8p / dw), = - pw, ($3 / i3w)+ = - c-zpw, w = l/l2 - vz 
For supersonic flow (w z- o), system (1.1) possesses two famllles of real 

characteristics. The equations of the characteristics of the second family, 

needed later on, are 

L 

4 
_ d(vlu) ___ - p?& + Y-"+"Q = 0, 

d'# 
L,- ?K+y-"y zz 0 

LG E $ + y-'X = 0 
(1.2) 

Here d/dy Is the total derivative with respect to I, taken along the char- 

acteristlc; 

Q = Q (9, u, v) = 5 
7J f/w” - L-2 - cu 

Y = Y ($, u, v) = -- pcwa 

x = X(9, U, u)= 
u~/wa-_cv 

pcw2 

All the parameters are conveniently taken to be dlmenslonless. 

2. Let us consider the problem of constructing the contour ag of the rear 

part of a body, which gives a minimum wave drag x for a given flow to the left 

of ac a.specified maximum allowable length 

of the contour (which we shall take as 

characteristic dimension), and satisfying 
c 

a certain condition, (In Fig.la, ac and ad 

are characteristics of the first family, 

bc Is a characterLstic of the second family). 

The isoperimetric condition Is defined by 

spe,cifying one of the characteristics of 

p ;;;ed;;rzyd body, e.g., its volume, or Tts 

, etc. In addition we require that 
the tail end point of the contour lie on 

the line v = I/"(X), which in particular may be rthe axis of symmetry. 

The direction of the specified contour at the left of pol~;.L a and that 
determined by the solution of the variational problem are different. We re- 
strict ourselves to the case when the angle at a is convex. Then fcr a small 
change of the contour ag, only the position of the characteristic ad (which 
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bounds the expanslon San) and the flow parameter8 to Its right will change. 

The contour tie may consist of a section of a two-sided extremim ob i.e. 

the end wall bg. If the parameters are denoted by the indices at the corre- 

spondfng points, and the coordinate system is chosen such that E. - 0, then 

the equation of the end wall will be x - 1 for yI s y 4 y,. The pressure on 

bg,. which will be assumed to be Independent of y, will be denoted by pO. 

Up to within a nonessential multiplier 
b e 

x = ~a+ -I- ‘n”dy 

a 

(2-Q 

a 

The isoperimetric condition ha8 the form 

where K is a specified constant, J’ and f are known functions, and prime de- 

notes the derivative (3 / d&,,+,,=o . 
ThU8, It IS required to construct the contour r =x(v) where 0 S x 4 1, 

% = 0, YI - $(x‘),, for which the functional (2.1) attalns a minimum, for a 

specified flow on the characteristic 00 and for lsoparimetrlc condition (2.2). 

The preeaure distribution on the contour is found by solving system (1.1). 
For the oomplete formulation of the problem, it is necessary to give the meth- 

od of detertining PO. 

3. Let p” be a constant, independent of the shape of the desired contour. 

Then y is completely determlned by the choice of the segment ab, whoee region 

of influence to the right 18 bounded by characteristic ob. We construct the 
functional 

b 

1 = j WP + V + a%) & + s WY’ + V”) dy + 
a b 

d 

+ sh%+ TZ'=&+ Tk'L)d\l,+ @I% -I- pa"Lg -I- p%)dq dy 
b G 

Here C is the region of the yy plane, bounded by the characterietlcs iad 

and 8b an& the vertical axis (Fig lb); X = comet, so fv), y,“ fyf , and vlD {r, w) 

are Lagrange multlpllera. For a flxed X, because of (1.1), (1.2) and (2.21, 

the variations of 1 and of x for any adm%selble variatlan are the 8ame. There- 

fore 

(3.1) 

a(v/u) 
- n”[--;i;;--- P$]_--hf’o}b&h+ [(~f~+u0--r30)_-hf~‘,01bA5b - 
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(3.1) 
cont. 

+ h ’ (fx” -f&O’) dxdy + j (U’%x + U”‘8u + U’%) dy + 
a la d 

+ s (VO)bx + P’B u +- V’*‘&I + 1""Ay) d$ + 
b 

f ss (W’“‘8x + W”‘8u + W’%u) d$ dy 

G 

Here U(r), v(f) and wii) are known factors of the Lagrange multipliers and 

other variables, bc Is the variation of F for fixed Y and y, As = bq + (by/ 

6l/)Av is the variation of 5 on the closing characteristic for fixed y, Ax, 

is the altered abscissa of the point g, $ = dp(x)/dx, the subscripts minus 

(plus) Indicates the quantity to the left (to the right) of the corresponding 

points (In the xy plane), and subscripts x and JT’ Indicate partial derlva- 

tlves with respect to x and x’. We note that although on the characteristic 

ad the derivatives of the flow parameters with respect to Y and y are dls- 

continuous, the multiplier in front of bus Is continuous In view of the first 

relation (1.2) and of the continuity of these flow parameters on ad. Defining 

p3 o In G by Equation 

and the boundary condition 

es” v(O)= _-ILso-_4-J (on db) 

Taking this Into account, using the Equations 

X ,-I!gpx+yp,=O, X,-fpY-~Yy.=O 

x i -jG 
_+yd), x,-$Y--+$Y,=O 

x0 + +y+$&- p Y,=O 

(5, = (% / w+.oP co = (a[ / W,,,) 

and transforming the Lagrange multipliers 

Q (y) = CZ” - r2b", Tl (49 7 T1°7 T2 (44 = TzO -5 (u /4r," (3.2) 

Ts w = r*“v PA4 Y) = PI09 cl2 (44 Y) = PC - r909 p3m Y) = pro 
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we find Instead of (3.1) the folloWhg: 

+ {[Y’ (P - P”) + h (f - fx’x’) - + a- ra]_ - 
-a (v / u) -r*lr- p$]_ - kf+‘}, &/b + [(nfx* + a)_ ---.~f~~+~~ b AXa - 

- (71 16 (v I u) - p@l)b- + [(Y’P” + b? T + ~f27,Axg + 

+ h f (#x0 - f$“) 6x dy + i (UVbx -t W&x+ U26”) dy + 
b a 

d 

+ \ (Vl6u + V% + V”Ay) d$ + \s (W’h + W2dv) d$ dy 
b i; 

Here@, v* and wi do not depend on yS and vs. This means that Equation 

L, - 0 In general may not be introduced, while L, - 0 should be introduced 

In 1 only under the line Integral sign. The remaining Lagrange multlpllers 

are chosen so that In 6~ there remain only the variations of the coordinates 

of the contour ag. Let h and v. satisfy the following equations in C: 

For w r 0, this system has the same characteristics as (1.1). Along these 

characteristics, the relations 

dplf ‘= dp2=0 
y”p v% (3.4) 

hold, in which the upper sign corresponds to the characteristics of the first 

family. The multipliers a, y1 and ya, and also the boundary conditions to de- 
termlne I.I~ and wet we find by equating to zero 0, and Ua on ob, - on db, and 
the coefficients before by, and yIo. This gives 

&=I, pa=a (on ab) 13.5) 

Vl s 
cv - u I/d - c2 dy1 __ - 

Cl42 4 
rl (q p d$ _ y-(WQu) f 

+ ray-'Yu - px (w + 5 “) = 0 

cu+v~u9--c~ 

y'+'pcw2 I+ 
+72y-y (YY,-XY,)=O (3.6) 
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drz -___ 
4J 

Tl (Y --;- 1) y-(v-! ‘L) Q - y2vy-w I) y = 0 (mm db) 

From the linearity and homogenlty of the second and third equations of 

(3.6) and the boundary conditions (3.7), we have 

r1w = ?-a (49 = 0 

and the boundary condition for pr and u? on db, the first equation of (3.61, 

assumes the form 
I-* p &-) 

fc1+ yY”a (a db) (3.8) 

These conditions completely determlne all the Lagrange multlpllers for 

any smooth contour ab. In accordance with these conditions we obtain 

8~ = 61 = {[y'(/+$')+ h(f-@z')--(~4 2')Ul_. - ~f+"}&a + 

+ r(& f a)_- &+%AXt+ [(Y'P" + hf")cP + VL-WQ + 

+ A‘{ (fro - fx2"') 6x dy -1 j U”6x dy 
b a 

If we note that the signs of 6~ on ub and Au, are arbitrary for I/, > yc, 

while Ax,, ax, and 6x on bg are nonpositive (In view of the boundedness of 

the contour length), then we really obtain the necessary conditions for a 

minimum 

U0~~(f,--fy’)-u’=0 (on ab) 

{[y’ (p - f) + h (f - fdx’) - (u / v) aI_ - hf+')b = 0 

k (fx” - fY”‘) > 0 (.on w 

[(& + a)_ - &‘+“I b < 0, [(Y’Y” + hf”) cp + w”lg \G 0 

P-9) 

Here the first two equations determine the ahape of the optimum contour, 

while the remaining ones are conditions of the fact that the end wall bq Is 

a section of boundary extremum. If the optimum contour does not have an end 

wall (v, = v,), then at the point 0, we must have the Inequality 

W (P - P") + 4 (f - f?/ 5') - (U / v)al_ - hf+"}g > 0 (3.10) 
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Theae conditions agree with those found In 133, except in notation6 and 

some nonessential dlffercnces In the problem formulation. In 131 the solution 

was Carried out without Including the Equations (1.2) Into the auxiliary func- 

tional. It is clear that this is a consequenae of the Zlnearlty and homogene- 

ity of the equations and boundary conditions used in determining y1 and Y,. 

As It follows from (3.4), (3.8) and (3.5), the values of br and clp on db 
are determined by Formulas 

4. In reality, PO Is determined by the interaction of the surface y - 

v”(x) snd therefore depends on the shape of the unknown contour being found. 

The flow configuration Is given ln Slg 2a, where ok, oh, bl and bf are char- 

acteristics of the first family, which bound the expansion waves kah and Lb/; 

ob and kb are characterlstlos of the seaond family, en Is a shock wave, and 

be Is the streamline dividing the flow from the stagnation region bca. This 

flow region Is repreeented In the Yy plane In Fig. 2b. 

(a) (b) (0) 

Let us assume that the pressure p o in the stagnation region Is everywhere 

constant, that the flow at the point e behind the shock wave agrees in dire& 

tion with the curve y - f ( .Z , and that of all possible flows, the one real- ) 
ized Is that which at e satisfies the relation 

n [p”, (v / u)e-, cpel = 0 (4.1) 
function and the minus sign lndloates parsmbterd to the 

present Investigation the concrete form of this function 

Is only Important that ln accordance with (4.1) 

where Ii la a known 

left of e. For the 
Is of no value. It 

[A(+)+ k,Ap" $-kzAz],-= 0 

Here, as before, AS Is the variation of 5 on the closing charaaterlstlc 

(for fixed Y). 
The use of (4.1) Introduces a ahange In the cionstru&fon of the auxiliary 

funotlonal. The region 0 Is now bounded by the streamlines ob and Be and the 



characterlstlca ah and he; the integral on ob Is added to that on be, while 
the integral on db Is replaced by that on ht. 

Special consideration is required for problems connected with varying yB 
Since the flow parameters at the corner undergo dlscontlnultlee, changes in 
the neighborhood of the point b, as we vary y,, (wlth fixed Y and v) will be 
finite. This renders ueual methods, based on the smallness of varlatlons,ln- 
applicable. Thus we proceed a8 follows. 
G 

In the integrals over regions G, and 
bounded by the contours ablh and be/, the integration will be carried 

0% In Y and v. Here the p, are functions of Y and y. As to the wave Lay, we 
shall take a coordinate system rigidly attached to the point b. The lndepend- 
ent variablea will be chosen to be Y and anule 8. defined a8 shown in Fl~.2b. 
In the ~8 plane (Fig.Pc), the region G 
the Ibf. The multipliers U? In 0, are k 

bo&ded-by b+fLb_, correeponds to 
aken a8 fun&Ions of Y and A, and the 

integrals over yy ire rep&ed b? Intervals over Ye. By the definition of e 

Y=%++-o (4.2) 
and Equations (1.1) become 

ax 
==-z --LQu=, 

co+ e v 

In constructing the auxiliary functional, we conaider In addition the 
posalblllty of dlscontlnultlee in the Lagrange multipliers on db [3]. In 
connection with this, the Integral over 0 ,, will be seperated into the sum of 
two Integrals, over G,, and GOpr respectively, 
continuity of the v,‘. 

each of which is a region of 

To this end, we take I In the form 

b 
II ,” A 

I= \ (Y”/~ + if + a”-&) dy + \ a”-@/ + \ (Y”P” + hf”) dy + . . . 

We find the first varlatlon bx = bX. Let b”{ be the variation of q In the 

region 0, and on Its boundaries for fixed Y and R. Then, according to (4.1) 

6Oy - Ayb . On the boundary 

dog = Sk + (zr Ayl, + [(a)e - (s)i] A8 

Here 65 is the variation of 5 outside of 0, at points of the unvaried 

boundary, 1 .e . , for fixed Y and y; the derivatives Inside (outelde) the cen- 

tered wave region are denoted by superscripts t (6), and Ae Is the variation 

of e on the boundary of the centered for a fixed Y. 

We require that the Lagrange multlpllere be continuous on bl and y, then 
determine I.I, O a8 was done previously, and make the substitution (3.2). Ae a 



result, the exprestrion for &u, after changing back to the variables t and 

y, become8 

+ { w (P - a”) + h tt - fx*x’) - (u I u3 al b- - Pf” - (u / u) 011 b+ + 

- fy”) &rcdy - j [a’8x + (a - pa) 8 (u. / v)] dy + 
b b 

& 

t_ 1 (U’%r + U’8u + U28v) dy + ( (V% + V28v + PA.y) dq f 
lz 

+i(RL8v+I128v)d$+ 11’ (W18u+W28v)d~ddy+ 
b W-G 

(RI- px ([p~]v++,l), R2=R1YIX) 
Here 1u* 3 in RI denotes jumps of $.lr on the characterlstlc dir, The choice 

of the Lagrange multipliers in the present c8se does not materially differ 

from that given above, and leads to the following results. The mult~ipliers 

p1 and cl0 are determined everywhere in C by Equations (3.3) and (3.4). The 

boundary condition8 far the solution of these equations and the equations 

for determining a, yr and v. are: on ab, condition (3.5), on he, Equation 

(3.6), and on be, Equation 

The value of 6. and the boundary conditions for calculating yi and y. are 

given by the Equations 
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Finally, the discontlnulties In the Lagrange multiplI.ers on the charac- 

teristic db must satisfy the relation 

(4.4) 

As before, the obtained system of equationa and boundary conditions de- 

fermine the Lagrange multipliers for any contour ag. However, now because 
of the lnhomogenlty of the last equation in (4.3), the fUnCtlOns vl = VP m 0 

are no longer solutions. 

We note that as In problems admitting a transition to characteristic con- 
the first condition of (4.3), by virtue of the hyperbollclty of 

;.l), is satisfied at any point of the segment ti of the character- 
istic he, and It may be used here instead of the second or third equation In 
(3.6) to determine y1 and ya. In addltlon, one of these equations may be Fe- 
placed by 

dn 
I%----_&+l)y- btz) Q _ pvy -(“bl)y + 

By considering the terms which remain In bx after choosing the Lagrange 

multipliers, we get the necessary conditions for a minimum x, which, except 

for the condition at the pdint b, are the same as (3.9). However, the condi- 

tions at the point b, after transformation with the use of (3.3), are re- 

placed by 

fY” (P - Y’> + 1 (f - fr4 - (u / u> ‘jllb- - [hp - (u i 2,) Ulbc + 
bJ 

The Integral Is calculated for y . E/~. 

In the case of the absence of the wall (u_ - v. I u,), the last equation 

and tt.en from the second equation (4.3 P 
revlously,-Ge get.& - ys - 0 tin ke, 

we conclude a. = 0. Considering this 
In (4.3) gives vI, 

-I. 
- 0. From this, as 

fact, and also that for yI - y, the characteristics he and db coincide, we 
obtain the same condition as in the case p0 - const, Including condition of 
the absence of the end Wall (3.10). Thus, this condltlon holds for the gene- 
ral case. Earller, this condltlon has been obtalned by other methods In f’i’]. 

We note that extension of the domain 0 used in the auxlllary functional 
beyond the boundary of the corresgondlng domain of Influence does not change 
the final results. Thus, If for p I const, we take the region 0 to be an 
actual point, then outside the triangle obd all the Lagrange multlpllers ~111 
turn out to be zero. 
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